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A new finite volume method is presented for discretizing general linear or nonlinear
elliptic second-order partial-differential equations with mixed boundary conditions.
The advantage of this method is that arbitrary distorted meshes can be used without
the numerical results being altered. The resulting algorithm has more unknowns
than standard methods like finite difference or finite element methods. However, the
matrices that need to be inverted are positive definite, so the most powerful linear
solvers can be applied. The method has been tested on a few elliptic and parabolic
equations, either linear, as in the case of the standard heat diffusion equation, or
nonlinear, as in the case of the radiation diffusion equation and the resistive diffusion
equation with Hall term. c© 2000 Academic Press
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1. INTRODUCTION

The numerical modelling in Lagrangian hydrodynamics or magnetohydrodynamics re-
quires the approximation of diffusion operators, possibly with mixed derivatives, without
the numerical results being altered by mesh distortions. In order to satisfy this condition
several methods have already been proposed [2, 5, 8, 13]. Here we present a new finite
volume method which has been briefly described in [7]. This method does not depend on
the mesh regularity, but it is suited to approximate mixed derivatives and it degenerates into
the finite difference method or the finite element method when the mesh is regular.

Given λ,κ a positive function and a positive definite matrix, we will focus on the ap-
proximation of the model diffusion equation:

−∇ · (κ · ∇u) = f in �

(κ · ∇u) · ν + λu = g on ∂�.

The principle of the method lies in the main following steps.

1. Define two meshes on the domain �: a primary mesh and a dual mesh.
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2. Integrate the diffusion equation over each cell of both these meshes.
3. Using Green’s formula, reduce the integral over one cell to the sum of the fluxes

over each side of the cell.
4. Introduce the values of the unknown function u both at the nodes of the primary

mesh and at those of the dual mesh as degrees of freedom for correctly approximating the
fluxes over the sides.

For simplicity of exposition we will first assume that κ is a scalar matrix before handling
the general case.

We will present numerical results for one model elliptic equation which enables a com-
parison with an analytic solution. The numerical experiments on the example of the distorted
mesh described in [8] show that the method gives second-order accuracy.

Finally we will present some numerical results for both linear and nonlinear parabolic
equations such as heat diffusion, radiation diffusion, and resistive diffusion with Hall
effect.

2. DEFINITIONS AND NOTATION

Let � be an open bounded polygonal set of R2 with boundary ∂�. We use a mesh on �

(called primary mesh) made up of arbitrary polygons (in practice triangles or quadrangles).
With each (primary) element of this mesh we associate one (primary) point: the centroid
is a qualified candidate but other points can be chosen. Similarly, with each boundary side
we associate one primary point: the midpoint is the natural candidate. Thus we obtain a set
of (primary) points that we connect in order to define a second mesh (called dual mesh: see
Fig. 1).

To ease the description we define the nodes of the primary mesh to be dual points.
Allowing for this definition the primary (resp. dual) points are the nodes of the dual (resp.
primary) mesh and they will be numbered by p (resp. d). The primary polygon sides and
their corresponding dual polygon sides will be numbered by s. Furthermore let us denote
by (see Fig. 2)

FIG. 1. A sample primary mesh (solid lines) and its dual mesh (dashed lines).
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FIG. 2. A sample cross made up with the primary polygon side Sps = [d, v(d, s)] (solid lines) and its corre-
sponding dual polygon side Sds = [p, v(p, s)] (dashed lines).

• ν the unit outward normal vector and τ the unit counterclockwise tangent vector
on ∂�;

• NP (resp. ND) the number of primary (resp. dual) points and NS the number of
sides;

• Pp (resp. Dd ) the primary (resp. dual) polygon associated with the primary interior
point p (resp. the dual point d);

• Sps (resp. Sds) the primary (resp. dual) polygon side number s;
• ν ps and νds (resp. τ ps and τ ds) the unit outward normal vector (resp. the unit

counterclockwise tangent vector) on the sides Sps and Sds of Pp and Dd ;
• ‖Pp‖ (resp. ‖Dd‖) the area of Pp (resp. Dd ) and |Sps | (resp. |Sds |) the length of the

side Sps (resp. Sds);
• θs the angle between ν ps and τ ds

• v(p, s) (resp. v(d, s)) the primary (resp. dual) point connected to p (resp. d) by the
dual side Sds (resp. primary side Sps).

Given u a function we will denote by u p (resp. ud ) the values of u at the primary (resp.
dual) points.

3. APPROXIMATION OF THE DIFFUSION OPERATOR: THE SCALAR CASE

Given λ, κ positive functions, consider the model diffusion problem

−∇ · (κ∇u) = f in �
(1)

κ∇u · ν + λu = g on ∂�.

3.1. The Finite Volume Method

Let us make the following operations:

• integrate the first equation over each primary polygon Pp;
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• integrate the second equation over each boundary primary side Sps ;
• integrate the first equation over each dual polygon Dd .

Thus we obtain

−
∫ ∫

Pp

∇ · (κ∇u) = −
∑

s∈∂ Pp

∫
Sps

κ∇u · ν ps =
∫ ∫

Pp

f

∫
Sps∩∂�

κ∇u · ν ps +
∫

Sps∩∂�

λu =
∫

Sps∩∂�

g

−
∫ ∫

Dd

∇ · (κ∇u) = −
∑

s∈∂ Dd

∫
Sds

κ∇u · νds +
∫

Dd∩∂�

λu =
∫ ∫

Dd

f +
∫

Dd∩∂�

g.

By noticing that

ν ps = − tan θsτ ps + 1

cos θs
τ ds

νds = − 1

cos θs
τ ps + tan θsτ ds

we obtain

−
∑

s∈∂ Pp

(
−tan θs

∫
Sps

κ∇u · τ ps + 1

cos θs

∫
Sps

κ∇u · τ ds

)
=

∫ ∫
Pp

f

− tan θs

∫
Sps∩∂�

κ∇u · τ ps + 1

cos θs

∫
Sps∩∂�

κ∇u · τ ds +
∫

Sps∩∂�

λu =
∫

Sps∩∂�

g

(2)

−
∑

s∈∂ Dd

(
− 1

cos θs

∫
Sds

κ∇u · τ ps + tan θs

∫
Sds

κ∇u · τ ds

)
+

∫
Dd∩∂�

λu

=
∫ ∫

Dd

f +
∫

Dd∩∂�

g.

Let κ̄ps (resp. κ̄ds) be an average value of κ along the side Sps (resp. Sds); we use the
approximations

∫
Sps

κ∇u · τ ps � κ̄ps
(
ud − uv(d,s)

)
,

∫
Sds

κ∇u · τ ds � κ̄ds
(
uv(p,s) − u p

)
∫

Sps

κ∇u · τ ds � κ̄ps
|Sps |
|Sds |

(
uv(p,s) − u p

)
,

∫
Sds

κ∇u · τ ps � κ̄ds
|Sds |
|Sps |

(
ud − uv(d,s)

)

and
∫ ∫

Pp

f � ‖Pp‖ f p,

∫ ∫
Dd

f � ‖Dd‖ fd

∫
Sps∩∂�

λu � |Sps |λpu p,

∫
Sps∩∂�

g � |Sps |gp

∫
Dd∩∂�

λu � |Dd ∩ ∂�|λdud ,

∫
Dd∩∂�

g � |Dd ∩ ∂�|gd .
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Finally, by replacing in the initial equations (2), we obtain the following linear system
of N = NP + ND equations in N unknowns:

∑
s∈∂ Pp

(
κ̄ps tan θs

(
ud − uv(d,s)

) + κ̄ds
1

cos θs

|Sps |
|Sds |

(
u p − uv(p,s)

)) = ‖Pp‖ f p (p ∈ �)

κ̄ps tan θs
(
ud − uv(d,s)

)+ κ̄ds
1

cos θs

|Sps |
|Sds |

(
u p − uv(p,s)

)+ |Sps |λpu p = |Sps |gp (p ∈ ∂�)

(3)∑
s∈∂ Dd

(
κ̄ps

1

cos θs

|Sds |
|Sps |

(
ud − uv(d,s)

) + κ̄ds tan θs
(
u p − uv(p,s)

)) + |Dd ∩ ∂�|λdud

= ‖Dd‖ fd + |Dd ∩ ∂�|gd .

Note that N = NS + NBS + 1 − NH where NBS is the number of boundary sides, and NH

is the number of holes in � (see [3], for example).

3.2. Properties of the Matrix of the Linear System

The matrix of the linear system (3) can be written as

A =
(

B U
V C

)
,

where B is an NP × NP matrix such that

Bpp =
∑

s∈∂ Pp

κ̄ds
1

cos θs

|Sps |
|Sds | (p ∈ �)

Bpp = κ̄ds
1

cos θs

|Sps |
|Sds | + |Sps |λp (p ∈ ∂�)

Bpq = −κ̄ds
1

cos θs

|Sps |
|Sds | (p �= q = v(p, s));

C is an ND × ND matrix such that

Cdd =
∑

s∈∂ Dd

κ̄ps
1

cos θs

|Sds |
|Sps | + |Dd ∩ ∂�|λd

Cde = −κ̄ps
1

cos θs

|Sds |
|Sps | (d �= e = v(d, s));

U is an NP × ND matrix such that (s and t being the sides of Pp which contain d)

Upd = κ̄ps tan θs − κ̄pt tan θt ;

and V is an ND × NP matrix such that (s and t being the sides of Dd which contain p)

Vdp = κ̄ds tan θs − κ̄dt tan θt .

Since it is well known that an M-type matrix satisfies a discrete maximum principle,
we are interested in conditions for A to be an M-matrix (see [15]). We recall that A is an
M-matrix if it is irreducible (i.e., the graph corresponding to A is connected), diagonally
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dominant, and

Aii > 0 ∀i; Ai j ≤ 0 ∀i, j i �= j; Aii >
∑
i �= j

|Ai j | for at least one j.

The matrices B, C are symmetric M-matrices. Unfortunately the matrix A itself is not an
M-matrix, nor is it diagonally dominant, but we can prove that is positive definite.

THEOREM 1. Suppose that there exists p, d ∈ ∂� such that λp �= 0, λd �= 0. If for all s,
κ̄ps = κ̄ds , then A is symmetric positive definite. If there exists s such that κ̄ps �= κ̄ds , A is no
more symmetric but it remains positive definite if the following condition holds:

1

4
(κ̄ps + κ̄ds)

2 sin2 θs < κ̄ps κ̄ds ∀s. (4)

Proof. By multiplying the equations of the system (3) by u p and ud and adding, we
obtain

∑
p

∑
s∈∂ Pp

(
κ̄ps tan θs

(
ud − uv(d,s)

)
u p + κ̄ds

1

cos θs

|Sps |
|Sds |

(
u p − uv(p,s)

)
u p

)

+
∑

d

∑
s∈∂ Dd

(
κ̄ps

1

cos θs

|Sds |
|Sps |

(
ud − uv(d,s)

)
ud + κ̄ds tan θs

(
u p − uv(p,s)

)
ud

)

+
∑
p∈∂�

|Sps |λpu2
p +

∑
d∈∂�

|Dd ∩ ∂�|λdu2
d

=
∑

p

‖Pp‖ f pu p +
∑

d

‖Dd‖ fdud +
∑
p∈∂�

|Sps |gpu p +
∑
d∈∂�

|Dd ∩ ∂�|gdud .

The left-hand side of the last formula can be rewritten as
∑

s

1

cos θs

(
κ̄ds

|Sps |
|Sds |

(
u p − uv(p,s)

)2 + κ̄ps
|Sds |
|Sps |

(
ud − uv(d,s)

)2 + (κ̄ps + κ̄ds)

× sin θs
(
u p − uv(p,s)

)(
ud − uv(d,s)

)) +
∑
p∈∂�

|Sps |λpu2
p +

∑
d∈∂�

|Dd ∩ ∂�|λdu2
d

or

∑
s

1

cos θs
κ̄ds

|Sps |
|Sds |

((
u p − uv(p,s) + 1

2

κ̄ps + κ̄ds

κ̄ds

|Sds |
|Sps | sin θs

(
ud − uv(d,s)

))2

+
(

κ̄ps

κ̄ds
− 1

4

(κ̄ps + κ̄ds)
2

κ̄2
ds

sin2 θs

)|Sds |2
|Sps |2

(
ud − uv(d,s)

)2
)

+
∑
p∈∂�

|Sps |λpu2
p +

∑
d∈∂�

|Dd ∩ ∂�|λdu2
d .

On the one hand, under the assumptions of the theorem, the preceding term is always
positive. On the other hand, if for all p, d, f p = 0, fd = 0, gp = 0, and gd = 0 then, for all
p, d, u p = 0 and ud = 0. Therefore A is positive definite.

In practice we choose

κ̄ps = κ̄ds = 1

4

(
κp + κd + κv(p,s) + κv(d,s)

)
.

In this case the theoretical condition (4) is always satisfied.
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3.3. Comparison with Other Methods

3.3.1. Delaunay–Voronoi Meshes

Suppose that the primary cells are triangles or quadrangles whose vertices are co-circular.
We will say that the primary mesh is a so-called Delaunay mesh if and only if the circumcircle
of any primary cell does not contain a dual point in its interior (see [4, 11]). If � contains
these circumcircle centers, they can be chosen as primary points in order to obtain the so-
called Voronoi mesh as the dual mesh. Then the (primary) Delaunay mesh and the (dual)
Voronoi mesh are such that

θs = 0 ∀s.

In this case the linear system (3) degenerates into the two simplest linear systems (we
assume that κ = 1)

∑
s∈∂ Pp

|Sps |
|Sds |

(
u p − uv(p,s)

) = ‖Pp‖ f p

(5)|Sps |
|Sds |

(
u p − uv(p,s)

) + |Sps |λpu p = |Sps |gp

and

∑
s∈∂ Dd

|Sds |
|Sps |

(
ud − uv(d,s)

) + |Dd ∩ ∂�|λdud = ‖Dd‖ fd + |Dd ∩ ∂�|gd . (6)

We obtain two different methods for approximating to the same diffusion equation (1):
the method (5), which can be called the primary method, provides an approximation of
the solution at the primary points, whereas the method (6), which can be called the dual
method, provides an approximation of the solution at the dual points (see [6, 12]).

When the primary cells are rectangles the method (5) coincides with the standard cell-
centered finite difference method. When the primary cells are triangles it is known that the
method (6) coincides with the piecewise linear finite element method (see, for example,
[9, 10]). In both these cases the matrix that needs to be inverted is an M-matrix.

3.3.2. General Meshes

When the mesh is made up of arbitrary quadrangles we obtain a nine-point method which
can be compared with the quadrilateral finite element method and the methods described
in [2, 5, 8, 13], although the degrees of freedom are not the same.

4. APPROXIMATION OF THE DIFFUSION OPERATOR: THE GENERAL CASE

Given λ, a positive function, and κ, a positive definite matrix, consider now the general
model diffusion problem

−∇ · (κ · ∇u) = f in �

(κ · ∇u) · ν + λu = g on ∂�.
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4.1. The Finite Volume Method

Make the same operations as the ones of the beginning of Subsection 3.1, and notice that

(κ · ∇u) · ν = ∇u · (κt · ν);
we obtain

−
∫ ∫

Pp

∇ · (κ∇u) = −
∑

s∈∂ Pp

∫
Sps

∇u · (κt · ν ps) =
∫ ∫

Pp

f

∫
Sps∩∂�

∇u · (κt · ν ps) +
∫

Sps∩∂�

λu =
∫

Sps∩∂�

g

−
∫ ∫

Dd

∇ · (κ∇u) = −
∑

s∈∂ Dd

∫
Sds

∇u · (κt · νds) +
∫

Dd∩∂�

λu =
∫ ∫

Dd

f +
∫

Dd∩∂�

g.

Since the vectors τ ps and τ ds cannot be collinear, there exists a single αs, βs, γs, δs ,
depending on κ, such that

κt · ν ps = −αs(κ)τ ps + βs(κ)τ ds

κt · νds = −γs(κ)τ ps + δs(κ)τ ds,

and we find

αs(κ) = 1

cos θs
νds · (κt · ν ps)

βs(κ) = 1

cos θs
ν ps · (κt · ν ps)

γs(κ) = 1

cos θs
νds · (κt · νds)

δs(κ) = 1

cos θs
ν ps · (κt · νds).

Hence we obtain

−
∑

s∈∂ Pp

(
−

∫
Sps

αs(κ)∇u · τ ps +
∫

Sps

βs(κ)∇u · τ ds

)
=

∫ ∫
Pp

f

−
∫

Sps∩∂�

αs(κ)∇u · τ ps +
∫

Sps∩∂�

βs(κ)∇u · τ ds +
∫

Sps∩∂�

λu =
∫

Sps∩∂�

g (7)

−
∑

s∈∂ Dd

(
−

∫
Sds

γs(κ)∇u · τ ps +
∫

Sds

δs(κ)∇u · τ ds

)
+

∫
Dd∩∂�

λu =
∫ ∫

Dd

f +
∫

Dd∩∂�

g.

Let κ̄ps (resp. κ̄ds) be an average (positive definite) value of κ along the side Sps (resp.
Sds). We use the following approximations:

∫
Sps

αs(κ)∇u · τ ps � αs(κ̄ps)
(
ud − uv(d,s)

)
∫

Sds

βs(κ)∇u · τ ds � βs(κ̄ds)
(
uv(p,s) − u p

)
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∫
Sps

γs(κ)∇u · τ ps � γs(κ̄ps)
(
ud − uv(d,s)

)
∫

Sds

δs(κ)∇u · τ ds � δs(κ̄ds)
(
uv(p,s) − u p

)

∫
Sps

βs(κ)∇u · τ ds �
∫

Sps

(
1

|Sds |
∫

Sds

βs(κ)∇u · τ ds

)
� βs(κ̄ds)

|Sps |
|Sds |

(
uv(p,s) − u p

)
∫

Sds

γs(κ)∇u · τ ps �
∫

Sds

(
1

|Sps |
∫

Sps

γs(κ)∇u · τ ps

)
� γs(κ̄ps)

|Sds |
|Sps |

(
ud − uv(d,s)

)
.

Finally, by inserting these into the initial system (7), we find the following linear system
of N = NP + ND equations in N unknowns:

∑
s∈∂ Pp

(
αs(κ̄ps)

(
ud − uv(d,s)

) + βs(κ̄ds)
|Sps |
|Sds |

(
u p − uv(p,s)

)) = ‖Pp‖ f p (p ∈ �)

αs(κ̄ps)
(
ud − uv(d,s)

) + βs(κ̄ds)
|Sps |
|Sds |

(
u p − uv(p,s)

) + |Sps |λpu p = |Sps |gp (p ∈ ∂�)

(8)∑
s∈∂ Dd

(
γs(κ̄ps)

|Sds |
|Sps |

(
ud − uv(d,s)

) + δs(κ̄ds)
(
u p − uv(p,s)

)) + |Dd ∩ ∂�|λdud

= ‖Dd‖ fd + |Dd ∩ ∂�|gd .

4.2. Properties of the Matrix of the Linear System

Let A be the matrix associated with the linear system (8). We can prove the following
theorem, which generalizes Theorem 1.

THEOREM 2. Suppose that there exists d ∈ ∂�, p ∈ ∂�, such that λp �= 0, λd �= 0. If κ
is symmetric and if, for all s, κ̄ps = κ̄ds , then A is a symmetric positive definite matrix.
Conversely, if κ is not symmetric or if there exists s such that κ̄ps �= κ̄ds , A remains a
positive definite matrix if the following condition holds:

1

4
(αs(κ̄ps) + δs(κ̄ds))

2 < βs(κ̄ds)γs(κ̄ps) ∀s. (9)

Proof. The proof is the same as that of Theorem 1. If κ is symmetric and if, for all
s, κ̄ps = κ̄ds , the condition (9) is the Cauchy–Schwarz inequality for the inner product
associated with the positive definite matrix κ̄ds = κ̄ps .

5. NUMERICAL EXPERIMENTS

Let us now present some numerical results that illustrate the behavior of the proposed
finite volume method.

The symmetric linear systems are solved by the conjuguate gradient method. The non-
symmetric linear system is solved by the quasi-minimized conjuguate gradient squared
method (see [14]).
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Let � be the unit square and let ∂�S , ∂�E , ∂�N , ∂�W be the boundaries of �. In order
to assess the accuracy of the method we will need the following for several meshes:

1. four regular grids from the coarsest (100 squares of size 0.1) to the finest (6400
squares of size 0.0125);

2. four distorted quadrilateral meshes as the one used in [8] from the coarsest (Fig. 3:
110 quadrangles of average size 0.1) to the finest (5760 quadrangles of average size 0.0125);

3. four distorted triangular meshes which have been constructed by dividing each
element of the preceding quadrilateral meshes into four triangles: then we obtain four
triangular meshes from the coarsest (Fig. 3: 440 triangles of average size 0.1) to the finest
(23040 triangles of average size 0.0125).

5.1. One Linear Elliptic Equation

In order to test the method, consider the following linear elliptic equation whose analytic
solution is u = 2 + cos(πx) + sin(πy):

−∇ · (∇u) = π2(cos(πx) + sin(πy)) in �

u = 2 + cos(πx) on ∂�S ∪ ∂�N

∇u · ν = 0 on ∂�E ∪ ∂�W .

Figures 4 and 5 display the error between the exact solution and the computed solution
for the above-mentioned meshes. These results call for the following comments.

• The proposed finite volume method is second-order accurate.
• In the case of distorted quadrilateral meshes, the error is similar to the one obtained

by using an equivalent regular grid (i.e., if the finite difference method has been used).
• In the case of distorted triangular meshes the proposed finite volume method provides

results which are more accurate than those obtained by the piecewise linear finite element
method. Let us recall that the error for the piecewise linear finite element method depends
on the parameter

sup
1≤p≤NP

(
d(Pp)

ρ(Pp)

)
,

where d(Pp) is the diameter of Pp, and ρ(Pp) is the diameter of the inscribed circle of Pp

(see [1]). It seems that this is not the case for our method.
• We point out that both incomplete finite volume methods that we obtain by taking

(see Subsection 3.2)

A =
(

B 0
0 C

)

do not converge when the mesh is distorted.
In comparison with the piecewise linear finite element method only a moderate number

of additional iterations are needed. Tables I and II give the number of iterations for the four
triangular distorted meshes mentioned above.
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FIG. 3. Quadrilateral and triangular coarse meshes.
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TABLE I

Piecewise Linear Finite Element Method

Number of iterations Number of unknowns

Mesh 1 75 242
Mesh 2 141 759
Mesh 3 289 2957
Mesh 4 579 11673

TABLE II

Proposed Finite Volume Method

Number of iterations Number of unknowns

Mesh 1 163 724
Mesh 2 312 2275
Mesh 3 618 8869
Mesh 4 1230 35017

FIG. 4. Relative error between the exact solution and the computed solution for the four distorted quadrilateral
meshes: +, finite difference method (in this case the distorted mesh is replaced by an equivalent regular grid); ∗,
incomplete proposed finite volume method; ×, proposed finite volume method.
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FIG. 5. Relative error between the exact solution and the computed solution for the four distorted triangular
meshes: +, piecewise linear finite element method; ∗, incomplete proposed finite volume method; ×, proposed
finite volume method.

5.2. One Linear Parabolic Equation

In this subsection we deal with the heat diffusion equation (κ is the thermal conductivity):

∂T

∂t
− ∇ · (κ∇T ) = 0 in �

T (0) = T0 in �

κ∇T · ν + g(T − TN ) = 0 on ∂�N

κ∇T · ν = 0 on ∂�S ∪ ∂�E ∪ ∂�W .

We have chosen κ = 1, g = 1, TN = 30, T0 = 1, and �t = 5 × 10−4, and we have used the
finest regular grid and the finest distorted quadrilateral mesh mentioned above. Figure 6
displays the temperature at time t = 4.10−2.

5.3. Two Nonlinear Parabolic Equations

In this subsection we deal with two plasma physics problems which can be written as the
following nonlinear parabolic equation:

∂u

∂t
− ∇ · (κ(u) · ∇u) = 0.
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FIG. 6. Temperature at time t = 4.10−2 (top, regular grid; bottom, distorted quadrilateral mesh).
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We will use the rough implicit time discretization:

un+1 − un

�t
− ∇ · (κ(un) · ∇un+1) = 0

At every time step we will enforce the maximum principle by replacing un
p and un

d by
sup(un

p, u0
inf) and sup(un

d , u0
inf), where

u0
inf = inf

x∈�
(u0(x)).

We will denote by c, ε0, µ0, qe, me, n, and T the light velocity, the permittivity and the
permeability of the free space, the charge and the mass of the electron, the density, and the
temperature of the plasma. We will use SI units.

5.3.1. Radiation Diffusion

In this subsection we deal with the radiation diffusion equation

1

c

∂T 4

∂t
− ∇ · (λ∇T 4) = 0 in �

T (0) = T0 in �
(10)

λ∇T 4 · ν + T 4 − T 4
N = 0 on ∂�N (Marshak condition)

λ∇T · ν = 0 on ∂�S ∪ ∂�E ∪ ∂�W ,

where

λ = 1.6 × 1034 1

n2
T 7/2

Choose Tr as a unit of temperature and let λr , tr be length and time units such as

λr = 1.6 × 1034 1

n2
T 7/2

r

tr = λr

c
.

Let u = T 4/T 4
r and κ(u) = u7/8; the system (10) becomes

∂u

∂t
− ∇ · (κ(u)∇u) = 0 in �

u(0) = u0 in �

κ(u)∇u · ν + u − uN = 0 on ∂�N

κ(u)∇u · ν = 0 on ∂�S ∪ ∂�E ∪ ∂�W .

We have chosen uN = 8.1 × 105, u0 = 1 (hence TN = 30Tr , T0 = Tr ), �t = 5 × 10−6tr
and we have used the finest regular grid and the finest distorted quadrilateral mesh mentioned
above. Figure 7 displays the temperature at time t = 5 × 10−4tr .
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FIG. 7. Temperature T/Tr at time t = 5.10−4 λr /c (top, regular grid; bottom, distorted quadrilateral mesh).
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5.3.2. Resistive Diffusion and Hall Effect

In this subsection, we deal with the resistive diffusion equation with Hall term (B = Bz

is the z-component of the magnetic field, σ is the electrical conductivity):

∂ B

∂t
− 1

µ0
∇ ·

(
1

σ
∇B

)
− 1

|qe|µ0
∇ ×

(
1

n
B∇B

)
= 0 in �

B(0) = B0 in �
(11)

B = BN on ∂�N

∇B · ν = 0 on ∂�S ∪ ∂�E ∪ ∂�W .

Choose nr as a unit of density and let λr , tr , Br be length, time, and magnetic field units
such that

λr = ctr

tr = ω−1
p =

(
nr |qe|2
ε0me

)−1/2

(ωp is the plasma frequency)

Br = me

|qe|tr .

Let u = B/Br and

κ(u) =




ε0ωp

σ

nr

n
u

−nr

n
u

ε0ωp

σ


 ;

the system (11) becomes

∂u

∂t
− ∇ · (κ(u)∇u) = 0 in �

u(0) = u0 in �

u = uN on ∂�N

∇u · ν = 0 on ∂�S ∪ ∂�E ∪ ∂�W .

We have chosen uN = −1, �t = 5 × 10−3tr , and

u0 = −1 if y ≥ 0.5 and u0 = 0 if y < 0.5
ε0ωp

σ
= 10−2 if x ≤ 0.5 and

ε0ωp

σ
= 10−3 if x > 0.5

nr

n
= 10−1 if x ≤ 0.5 and

nr

n
= 10−5 if x > 0.5

We have used the finest regular grid and the finest distorted quadrilateral mesh mentioned
above. Figure 8 displays the magnetic field at time t = 0.5tr . The results are similar to the
ones obtained by a transport-projection method (see [16]).
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FIG. 8. Magnetic field B(|qe|ω−1
p /me) at time t = 0.5ω−1

p (top, regular grid; bottom, distorted quadrilateral
mesh).
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6. CONCLUSIONS

The numerical experiments show the efficiency of the method. Although no proof has
been given, we notice that it is second-order accurate. Furthermore it does not depend on
the mesh regularity, unlike the triangular or quadrilateral finite elements, which was the
initial objective. In the case of nonlinear problems, however, we observe that it does not
verify the maximum principle, without this deficiency being severely penalizing. Actually it
suffices to force the calculated solution to respect this principle at every time step to obtain
satisfactory results, although the total energy is not exactly preserved.

Allowing for the properties of our finite volume method—its independence from the
mesh regularity, its degeneration into the finite difference method on regular grids, its
natural adaptation to the discretization of mixed derivatives terms, its easy implementation,
and the variety of successfully tested numerical examples—it thus seems to be a qualified
candidate for the approximation of diffusion operators on distorted meshes.
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