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A Finite Volume Method for the Approximation
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A new finitevolumemethodis presented for discretizing general linear or nonlinear
elliptic second-order partial-differential equations with mixed boundary conditions.
The advantage of this method is that arbitrary distorted meshes can be used without
the numerical results being altered. The resulting agorithm has more unknowns
than standard methods like finite difference or finite element methods. However, the
matrices that need to be inverted are positive definite, so the most powerful linear
solvers can be applied. The method has been tested on a few elliptic and parabolic
equations, either linear, as in the case of the standard heat diffusion equation, or
nonlinear, asin the case of the radiation diffusion equation and the resistive diffusion
equation with Hall term.  © 2000 Academic Press

KeyWords: discretization; finitevolume method; heat diffusion; resistivediffusion;
Hall effect.

1. INTRODUCTION

The numerical modelling in Lagrangian hydrodynamics or magnetohydrodynamics re-
quires the approximation of diffusion operators, possibly with mixed derivatives, without
the numerical results being altered by mesh distortions. In order to satisfy this condition
several methods have already been proposed [2, 5, 8, 13]. Here we present a new finite
volume method which has been briefly described in [7]. This method does not depend on
the mesh regularity, but it is suited to approximate mixed derivatives and it degeneratesinto
the finite difference method or the finite element method when the mesh isregular.

Given A, k a positive function and a positive definite matrix, we will focus on the ap-
proximation of the model diffusion equation:

V- (k-Vu =f inQ
(k-Vu)-v+au=g onoQ2.
The principle of the method lies in the main following steps.
1. Define two meshes on the domain 2: a primary mesh and a dual mesh.
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2. Integrate the diffusion equation over each cell of both these meshes.

3. Using Green's formula, reduce the integral over one cell to the sum of the fluxes
over each side of the cell.

4. Introduce the values of the unknown function u both at the nodes of the primary
mesh and at those of the dual mesh as degrees of freedom for correctly approximating the
fluxes over the sides.

For simplicity of exposition we will first assumethat « isascalar matrix before handling
the general case.

We will present numerical results for one model elliptic equation which enables a com-
parisonwith an analytic solution. The numerical experimentsonthe exampleof thedistorted
mesh described in [8] show that the method gives second-order accuracy.

Finally we will present some numerical results for both linear and nonlinear parabolic
equations such as heat diffusion, radiation diffusion, and resistive diffusion with Hall
effect.

2. DEFINITIONSAND NOTATION

Let © be an open bounded polygonal set of R? with boundary 92. We use amesh on
(called primary mesh) made up of arbitrary polygons (in practice triangles or quadrangles).
With each (primary) element of this mesh we associate one (primary) point: the centroid
isaqualified candidate but other points can be chosen. Similarly, with each boundary side
we associate one primary point: the midpoint is the natural candidate. Thus we obtain a set
of (primary) pointsthat we connect in order to define a second mesh (called dual mesh: see
Fig. 1).

To ease the description we define the nodes of the primary mesh to be dua points.
Allowing for this definition the primary (resp. dual) points are the nodes of the dua (resp.
primary) mesh and they will be numbered by p (resp. d). The primary polygon sides and
their corresponding dual polygon sides will be numbered by s. Furthermore let us denote
by (seeFig. 2)

FIG.1. A sampleprimary mesh (solid lines) and its dual mesh (dashed lines).
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v
ps ,r

ds

FIG. 2. A sample cross made up with the primary polygon side S,s =[d, v(d, s)] (solid lines) and its corre-
sponding dual polygon side Sys =[p, v(p, S)] (dashed lines).

e v the unit outward normal vector and 7 the unit counterclockwise tangent vector
on 0<2;

e Np (resp. Np) the number of primary (resp. dual) points and Ns the number of
sides;

e Py (resp. Dq) the primary (resp. dua) polygon associated with the primary interior
point p (resp. the dual point d);

o Sps (resp. Sys) the primary (resp. dual) polygon side number s;

o vps and vys (resp. Tps and T4s) the unit outward normal vector (resp. the unit
counterclockwise tangent vector) on the sides S, and Sys of P, and Dy;

o ||Ppll (resp. | Dyll) the areaof Py (resp. Dg) and | Sys| (resp. | Sus) the length of the
side Sys (resp. Sus);

o 65 the angle between v s and 7¢s

e v(p, S) (resp. v(d, s)) the primary (resp. dua) point connected to p (resp. d) by the
dual side §ys (resp. primary side S;s).

Given u afunction we will denote by up, (resp. ug) the values of u at the primary (resp.

dual) points.

3. APPROXIMATION OF THE DIFFUSION OPERATOR: THE SCALAR CASE

Given A, « positive functions, consider the model diffusion problem
—V - «&Vu) = f inQ

)
kVUu-v+iu=g onog2.

3.1. TheFinite Volume Method
Let us make the following operations:

o integrate the first equation over each primary polygon Pp;
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e integrate the second equation over each boundary primary side Ss;
o integrate the first equation over each dual polygon Dy.

Thus we obtain
—/ V- &V = Z/ V- vps—//f
Pp sedPp
/ KVU~Vps+/ Au:/ g
SpsNIQ Sty SpsNa
—/ V- (kVu) = Z/KVU Vs + / AU=// f+/ 9
Dqg sedDy Danog D Danoe
By noticing that
tan o + 1
Vs = — T —T
ps STPS T coshg | o
Vds = — TPS + tanes‘rds
S
we obtain

— Z (—tan@s/ KVU'Tps+
Sps

s€dPp

1
—tan@s/ KVU'Tps+ /
SN0 C0sbs Js,noe

/ «Vu - ‘rps—f—tanes/ «kVu- ’rds> +/ AU
C0oS6Os s DgNI

—Z(

s€d Dy

z// f+/ g
Dy DgNa2

1
/ «Vu- Td3> = / f
Cosbs /s, Po

KVU-Tds—i-/ KU:/ g
SN2 SH

Let kps (resp. kgs) be an average value of « along the side Sps (resp. Sys); we use the

approximations

/ KVU‘TpSZEpS(ud_UU(d,S))’
S
| Sps|
/ «Vu - Tds—Kps|2|(uv(p.S)_uP)’

and

// f 2 [Pyl fp,
PP

/ AU~ |Sps|)¥pup’
SR

/ AU~ |Dg N 3RAqUd,
DgNa2

/ kVU- Tgs =~ l?ds(uv(p,s) - up)

s

/ kVu- Tps = de S ( Uv(d,s))

S |Spol

// f ~ | Dyl fq
Dqg

/ 9~ |Sul0p
SpsnOR

/ g~ |Dq N 0€2|gq-
DgNa2
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Finally, by replacing in the initial equations (2), we obtain the following linear system
of N = Np + Np equationsin N unknowns:

_ 1
Z <Kpstan95(ud - Uu(d,s)) + Kds—— s ( Uu(p,s))) = [Ppll fp (pe)

forrh COS6s | Sys|
_ 1 Sl

tanfs(ug — U, + — Uy + ApUp = € 92
Kps s( d (d,s)) Kd300595|315|( (p,s)) [SpslApUp =1Spslp (P )

©)

— 1 Sl _
Z (Kps— S (Ud — Uu(d,s)) + detanes(up - Uu(p,s)) + |Dg N 92| AqUq
s€d Dy €S | Sps|

= [IDall fa + |Dg N 0€2|ga-

Notethat N = Ns+ Ngs+ 1 — Ny where Ngs isthe number of boundary sides, and Ny
isthe number of holesin 2 (see [3], for example).

3.2. Propertiesof the Matrix of the Linear System

The matrix of the linear system (3) can be written as

B U
SR

where B isan Np x Np matrix such that

1 Syl
Bpp = Q
= 2 st (et
sedPp
_ 1 Sy
Bpp = A Q
PP = ks o 1Sl +SslAp (P €IR)
_ 1 |Ssl
B = — —_— = N
pq KdSCOSQS ISuel (P#q=1v(p,9));

Cisan Np x Np matrix such that

— 1 |
Cyqa = Kps——— + |Dg N 92| Aq
sg,;d P® cosfs | Sps|

—_ 1 &l
ps
C0S6s | Spsl

Coe = — (d#e=v(d,9));

Uisan Np x Np matrix such that (s and t being the sides of P, which contain d)
Upd = kpstanfs — kpt tanéy;

and V isan Np x Np matrix such that (s and t being the sides of Dy which contain p)
Vip = kds tanbs — kgt tano;.

Since it is well known that an M-type matrix satisfies a discrete maximum principle,
we are interested in conditions for A to be an M-matrix (see [15]). We recall that A isan
M-matrix if it isirreducible (i.e., the graph corresponding to A is connected), diagonally
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dominant, and
Ai >0 Vi; Aj<0 Vi,j i#]s Aii>Z|Aij|foratIeastonej.
i#]
Thematrices B, C are symmetric M-matrices. Unfortunately the matrix A itself isnot an
M-matrix, nor isit diagonally dominant, but we can prove that is positive definite.

THEOREM 1. Suppose that there exists p, d € 92 such that A, # 0, Ag #0. If for all s,
Kps = kds, then A is symmetric positive definite. If there exists s such that « ps # ks, A iSno
more symmetric but it remains positive definite if the following condition holds:

1_ _ . _
Z(Kps + kgs)? SINP 65 < K psKds Vs. (@]

Proof. By multiplying the equations of the system (3) by u, and ugq and adding, we
obtain

_ 1]
50 % (Rt o) + s oy o (Up = Ui

p sedPp

1 _
+ Z Z < COSQ :;j)j ( uU(d,S))ud + de tanes(Up - uu(p,s))Ud)

d sedDy

+ > 1Sslipuy + > |Dy N 9QAAUS

pea2 ded

= Z 1Py fpup+z IDgll fata + D 1SpslgpUip + Y [Da N 3R daUa-

ped2 dedQ

The left-hand side of the last formula can be rewritten as

(! |Ss| _
Zsjcoses< |§fs|< _“vm's)) +Kps e (Ud uv(d,s))2+(Kps+KdS)

| Sps|
x SiNfs(Up — Uy(ps)) (Ug — uv(d,s))) + ) ISpslhptd + > [Da N 9QAqu3
pea2 dedQ

or

1 _ |Sps 1Kps+’<ds [Sys| z
— —u = sinfs(ug — u
2 costi 5 1Pt s(te ~ i)

Kds | Sps|
kps 1 (kps+ Kas)? >|st| 2)
+Fl=—= sin6), — Uy,
(de 4 Kds |Sps|2( . s))
+ ) ISwslipu2+ D |Dg N 9QUAgUE.
ped2 dedQ

On the one hand, under the assumptions of the theorem, the preceding term is aways
positive. On the other hand, if for dl p,d, f,=0, f4=0, gp =0, and g4 =0 then, for all
p, d, u, =0and ug =0. Therefore A is positive definite. =

In practice we choose

_ _ 1
Kps = Kds = Z (Kp + kg + Ku(p,s) —+ Kv(d,s))-

In this case the theoretical condition (4) is aways satisfied.
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3.3. Comparison with Other Methods
3.3.1. Delaunay—-\oronoi Meshes

Supposethat the primary cellsaretriangles or quadrangleswhose verticesare co-circular.
Wewill say that the primary meshisaso-called Delaunay meshif and only if thecircumcircle
of any primary cell does not contain adual point initsinterior (see [4, 11]). If  contains
these circumcircle centers, they can be chosen as primary points in order to obtain the so-
called Voronoi mesh as the dual mesh. Then the (primary) Delaunay mesh and the (dual)
Voronoi mesh are such that

6s =0 Vs.

In this case the linear system (3) degenerates into the two simplest linear systems (we
assumethat « = 1)

Z 5o (Up — Uyps)) = IPpll fp

s€dPp |SjS| (5)
EN _
(Up = Uu(ps) + SpslApUp = ISpsITp
EX
and
S
S Bl Gy~ Uyag) +1Da N 890auq = IDal fa + IDg N 3R0gs. (6)

s€d Dy | Spsl

We obtain two different methods for approximating to the same diffusion equation (1):
the method (5), which can be called the primary method, provides an approximation of
the solution at the primary points, whereas the method (6), which can be called the dual
method, provides an approximation of the solution at the dual points (see [6, 12]).

When the primary cells are rectangles the method (5) coincides with the standard cell-
centered finite difference method. When the primary cells are trianglesit is known that the
method (6) coincides with the piecewise linear finite element method (see, for example,
[9, 10]). In both these cases the matrix that needs to be inverted is an M -matrix.

3.3.2. General Meshes

When the mesh ismade up of arbitrary quadrangleswe obtain a nine-point method which
can be compared with the quadrilateral finite element method and the methods described
in[2,5, 8, 13], although the degrees of freedom are not the same.

4. APPROXIMATION OF THE DIFFUSION OPERATOR: THE GENERAL CASE

Given A, apositive function, and «, a positive definite matrix, consider now the general
model diffusion problem

-V (k-Vu=f inQ
(k-Vu)-v+au=g on Q.
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4.1. TheFinite Volume Method
Make the same operations as the ones of the beginning of Subsection 3.1, and notice that
(k-VUu)-v=Vu- (k' v);
we obtain

—/ V- (kVU=-—>" Vu-(fet-ups):/ f
PP PP

s€dPp Sps
/ Vu-(nt-ups)—l—/ Au:/ g
SpsNIR SpsNIQ SpsNIQ

_/ V'(“V“)=_Z/VU~(FL‘~WS)+/ Au:// f+/ g.
Dy Sis DgNIQ Dy DgNoS

s€d Dy

Since the vectors 7ps and T4s cannot be collinear, there exists a single os, Bs, s, Js,
depending on «, such that

K- Vps = —s(K)Tps + Bs(K) Tds
K- Vgs = _VS(K')TpS + 3s(Kk) Tds,
and we find
(K) ! (K )
Os(K) = Vigs * (K -V
S COS@S ds ps
1 t
Bs(k) = COSGSVPS. (k 'Vps)
(K) ! (K )
K) = —Vgs- (K -V
Vs cos6s ds ds
ds(K) ! (K )
R) = 1 %4 (K -V .
s COS@S ps ds
Hence we obtain
— Z (—/ as(k)VU - Tps + ﬂs(R)VU'Tds) Z/ f
sedPp S Sps Po

_/ as(k)Vu - Tps + / Bs(k)VU - Tgs + / AU = / g
SpsOQ2 SpenOQ2 SpsOQ SpeOQ

- Z <_/ Vs(“)vu'Tps'F/ SS(H)VU~TdS)+/ )»U:// f+/ g.
s€dDy Sis s DaNo Dy DgNIS

Let kps (resp. kqs) be an average (positive definite) value of « along the side Sy (resp.
Sis). We use the following approximations:

/ as(K)VU - Tps = as(Kps) (Ud - Uv(d,s))

Sps

5 Bs(K)VU - Tg4s =~ Bs(Kds) (Uv(p,s) - Up)
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/ vs(k)VU - Tps = Vs(Eps) (Ud - Uv(d,s))

S

/ 8s(K) VU - Tgs = 85(Fds) (Uy(p.s) — Up)

Sus

" 1
[ Avu T /Sps<|sis|'&sﬂs<n)Vu~rds) ﬂsmds):z’s:(uv(ps) up)

1 [
/s Ys(K)VU - Tps /Sjs (|Sps| /Sps Ys(k)VU - Tps) = Vs(ﬂps) Y ( Uv(d,s))-

Finally, by inserting these into theinitial system (7), we find the following linear system
of N = Np + Np equationsin N unknowns:

Z (as("ips) (Ud — Uy, s)) + Bs(Kds) :Zﬁj ( Uu(p,s))) = || Ppll fp (pe)
seaPy s
Ols('ips) (Ud — Uy, s)) + Bs(Kds) :2? ( Uv(p,s)) + |SpslipUp = [SpslGp (P € 0R2)

8
Z (Vs(ﬂps) % ( Uu(d,s)) + 8s(kds) (Up - Uu(p,s))> + |Dg N 9€2[AqUqg
sed Dy |$J |

=Dgll fg + Dg N 92[Qq.

4.2. Propertiesof the Matrix of the Linear System

Let A be the matrix associated with the linear system (8). We can prove the following
theorem, which generalizes Theorem 1.

THEOREM 2. Suppose that there existsd € 92, pe€ 92, suchthat A, #0, 1 #0. If &
is symmetric and if, for all s, kps = Kgs, then A is a symmetric positive definite matrix.
Conversely, if « is not symmetric or if there exists s such that kps # Kgs, A remains a
positive definite matrix if the following condition holds:

1 _ _ _ _
Z(Oﬂs("ips) + Ss(de))z < Bs(kds) Vs(Kps) Vvs. 9

Proof. The proof is the same as that of Theorem 1. If x is symmetric and if, for all
S, Kps = Kds, the condition (9) is the Cauchy—Schwarz inequality for the inner product
associated with the positive definite matrix Kgs = kps. =

5. NUMERICAL EXPERIMENTS

Let us now present some numerical results that illustrate the behavior of the proposed
finite volume method.

The symmetric linear systems are solved by the conjuguate gradient method. The non-
symmetric linear system is solved by the quasi-minimized conjuguate gradient squared
method (see [14]).
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Let 2 bethe unit square and let 9Q2s, dQ2e, 32N, Q2w be the boundaries of 2. In order
to assess the accuracy of the method we will need the following for several meshes:

1. four regular grids from the coarsest (100 squares of size 0.1) to the finest (6400
squares of size 0.0125);

2. four distorted quadrilateral meshes as the one used in [8] from the coarsest (Fig. 3:
110 quadrangles of averagesize 0.1) to thefinest (5760 quadrangles of average size0.0125);

3. four distorted triangular meshes which have been constructed by dividing each
element of the preceding quadrilateral meshes into four triangles: then we obtain four
triangular meshes from the coarsest (Fig. 3: 440 triangles of average size 0.1) to the finest
(23040 triangles of average size 0.0125).

5.1. OnelLinear Elliptic Equation

In order to test the method, consider the following linear elliptic equation whose analytic
solutionisu =2+ cos(mr X) + sin(ry):

—V - (Vu) = n2(cos(rx) +sin(zy))  inQ
u = 2+ cos(X) onoRsU 0y
Vu-vr=0 on Qg U Q.

Figures 4 and 5 display the error between the exact solution and the computed solution
for the above-mentioned meshes. These results call for the following comments.

e The proposed finite volume method is second-order accurate.

o Inthe case of distorted quadrilateral meshes, the error is similar to the one obtained
by using an equivalent regular grid (i.e., if the finite difference method has been used).

o Inthecaseof distorted triangular meshesthe proposed finitevolumemethod provides
results which are more accurate than those obtained by the piecewise linear finite element
method. Let usrecall that the error for the piecewise linear finite element method depends

on the parameter
sup (d(Pp) )
1<p=Np \ P (Pp)

where d(Pp) is the diameter of Py, and o (Pp) is the diameter of the inscribed circle of Py
(see[1]). It seemsthat thisis not the case for our method.
e \We point out that both incomplete finite volume methods that we obtain by taking

(see Subsection 3.2)
B O
St

do not converge when the mesh is distorted.

In comparison with the piecewise linear finite element method only a moderate number
of additional iterations are needed. Tables | and |1 give the number of iterations for the four
triangular distorted meshes mentioned above.
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TABLE |
Piecewise Linear Finite Element M ethod

Number of iterations Number of unknowns
Mesh 1 75 242
Mesh 2 141 759
Mesh 3 289 2957
Mesh 4 579 11673
TABLE |1

Proposed Finite Volume Method

Number of iterations Number of unknowns
Mesh 1 163 724
Mesh 2 312 2275
Mesh 3 618 8869
Mesh 4 1230 35017
=
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FIG.4. Relativeerror between theexact solution and the computed solution for the four distorted quadrilateral
meshes: +, finite difference method (in this case the distorted mesh is replaced by an equivalent regular grid); x,
incomplete proposed finite volume method; x, proposed finite volume method.
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FIG.5. Relative error between the exact solution and the computed solution for the four distorted triangular
meshes: +, piecewise linear finite element method; *, incomplete proposed finite volume method; x, proposed
finite volume method.

5.2. OnelLinear Parabolic Equation

Inthis subsection we deal with the heat diffusion equation (« isthethermal conductivity):

oT .
E—V»(KVT):O inQ

TO =T, inQ
kVT -v4+g(T—-Tn) =0 on 02N
«VT.-v=0 onoRsU 0Qg U 0Qw.

Wehavechosenk =1, g=1, Ty =30, To=1, and At =5 x 10~%, and we have used the
finest regular grid and the finest distorted quadrilateral mesh mentioned above. Figure 6
displays the temperature at time t = 4.1072.

5.3. Two Nonlinear Parabolic Equations

In this subsection we deal with two plasma physics problems which can be written asthe
following nonlinear parabolic equation:
au

E—V-(n(u)«Vu):O.
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FIG. 6. Temperatureat timet =4.10"2 (top, regular grid; bottom, distorted quadrilateral mesh).
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We will use the rough implicit time discretization:
un+1 —_u"

— . n . n+1 —
AT V. (kW) -Vu™) =0

At every time step we will enforce the maximum principle by replacing uj; and ug by
sup(u), u%y) and sup(u, uSy), where

u%:igw%my

We will denote by c, g, 1o, Ge, Me, N, and T the light velocity, the permittivity and the
permeability of the free space, the charge and the mass of the electron, the density, and the
temperature of the plasma. We will use Sl units.

5.3.1. Radiation Diffusion

In this subsection we deal with the radiation diffusion equation

19T .
= —V-(VTH =0 inQ
c ot

TO =T, inQ
(10)
AVT* . v 4T4-T¢ =0 on 32y (Marshak condition)

AVT.v=0 on 0QRsU a2 U IQywy,
where
ul_7p
h=16x10% T
n

Choose T; asaunit of temperature and let A, , t; be length and time units such as

1
A= 16x10% S T7/?
n

=

t

Letu=T#*/T*and «(u) = u’/8; the system (10) becomes

%—V~(K(U)VU)=O inQ

u0) = ug inQ
k(WVu-vr4+u—uy =0 on o2y
k(WVu-v=0 0N dRsU Qe U dQw.

We have chosen uy =8.1x 10°, ug=1 (hence Ty =30T,, To=T,), At =5x 1075,
and we have used thefinest regular grid and thefinest distorted quadrilateral mesh mentioned
above. Figure 7 displays the temperature at timet =5 x 10~%, .
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FIG.7. Temperature T/T, attimet=5.10"* A, /c (top, regular grid; bottom, distorted quadrilateral mesh).
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5.3.2. Resistive Diffusion and Hall Effect

In this subsection, we deal with the resistive diffusion equation with Hall term (B = B,
is the z-component of the magnetic field, o isthe electrical conductivity):

0B 1 1 1 1 .
———V-(—VB)— Vx(—BVB):O inQ
o |Cel tto n

B(0) = By inQ
(11)
B = By on o2y

VB-v=0 onodRsU Qe U IQw.

Choose n, asaunit of density and let A;, t;, B, belength, time, and magnetic field units
such that

)\,r - Ctr
S (lgel?) Y2 :
t=w," = o (wp isthe plasma frequency)
ollle
Me
r — .
|Gty

Letu=B/B; and

80(1)p &
o n
K(U) = N eowp |
n o
the system (11) becomes
a .
8—$—V-(n(u)Vu)=O inQ

u0) = ug inQ
U = Uyn on I2N

Vu-v=0 ondRsU Qg U IQw.

We have chosen uy = —1, At =5 x 1073, and

u=-1 Iify>05 and Up=0 ify <05
% _ 102 ifx <05 and 2P —-103 ifx>05

o o

n o ne 5

F:10 if x <05 and F:10 if x > 0.5

We have used the finest regular grid and the finest distorted quadrilateral mesh mentioned
above. Figure 8 displays the magnetic field at timet = 0.5t . The results are similar to the
ones obtained by atransport-projection method (see [16]).
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FIG. 8. Magnetic field B(|ge|w,"/m.) at time t =0.5w," (top, regular grid; bottom, distorted quadrilateral
mesh).
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6. CONCLUSIONS

The numerical experiments show the efficiency of the method. Although no proof has
been given, we notice that it is second-order accurate. Furthermore it does not depend on
the mesh regularity, unlike the triangular or quadrilateral finite elements, which was the
initial objective. In the case of nonlinear problems, however, we observe that it does not
verify the maximum principle, without this deficiency being severely penalizing. Actually it
sufficesto force the cal culated solution to respect this principle at every time step to obtain
satisfactory results, although the total energy is not exactly preserved.

Allowing for the properties of our finite volume method—its independence from the
mesh regularity, its degeneration into the finite difference method on regular grids, its
natural adaptation to the discretization of mixed derivativesterms, its easy implementation,
and the variety of successfully tested numerical examples—it thus seems to be a qualified
candidate for the approximation of diffusion operators on distorted meshes.
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